

Stability of Matter p. 13

22. Thomas-Fermi theory

22. The Thomas-Fermi theory

As we have seen, many of the problems are very difficult and complicated for the full many-body problem (stability, ground state energy, ionization...).

The idea is to address them within the framework of simplified, effective theories.

An example of such effective theory is the Thomas-Fermi theory which describes the energy of a many-body quantum system only through its density

$$g(k) = N \int dx_1 \dots dx_N |\psi_N(x_1, k_1, \dots, x_N)|^2$$

(here ψ_N is the unknown many-body wave function). Hence the name **density functional theory**.

TF theory is much easier to study than the full many-body problem, due to the fact that it depends on much less degrees of freedom (the density is a function on \mathbb{R}^3 , while the wave function is a function on \mathbb{R}^{3N}). Later we will discuss the validity of the TF approximation in the limit when $N, z \rightarrow \infty$.

22. 1. Derivation of TF functional

The starting point is the kinetic energy. We need to express it in terms of the density ρ .

To this end we consider the free Fermi gas.

To determine the kinetic energy of the free Fermi gas we know we need to fill the Fermi ball

$$N = \sum_{k < k_F} 1 \sim \int \delta^3 k \sim k_F^3$$

$$|k| < k_F$$

the

$$E = \int_{|k| < k_F} k^2 \delta^3 k \sim k_F^5 \sim N^{5/3}$$

If we make the assumption $\delta(x) = \delta = N$, the kinetic energy scales like $\delta^{5/3}$. Note that this scaling is in agreement with the semiclassical approximation, like the kinetic Lieb-Thirring bound.

Thus the one-body part of the TF functional will be given as

$$E_{TF}^{(1)}(\rho) = C_{TF} \int \rho(x)^{5/3} dx - \int \rho(x) V(x) dx$$

where $V(x)$ is the electrostatic potential generated by the nuclei:

$$V(x) = \sum_{k=1}^N \frac{Z_k}{|x - R_{ik}|}$$

Indeed, we have

$$\langle \varphi_N, \sum_{i=1}^N \sum_{k=1}^n \frac{z_k}{|x_i - x_{k,i}|} \varphi_N \rangle = \sum_{i=1}^N \sum_{k=1}^n z_k \int dx_1 \dots dx_n |\varphi_N(x_1, \dots, x_n)|^2 \frac{1}{|x_i - x_{k,i}|}$$

$$= N \sum_{k=1}^n z_k \int dx_1 \dots dx_n |\varphi_N(x_1, \dots, x_n)|^2 \frac{1}{|x_i - x_{k,i}|} = \int dx p(x) V(x).$$

For the electron-electron interaction we have:

$$\langle \varphi_N, \sum_{i < j} \frac{1}{|x_i - x_j|} \varphi_N \rangle$$

To make connection with the density $p(x)$, we assume the electrons are classical point particles with positions x_i . We treat them as independent, identically distributed random variables with probability distribution $p(x)/N$. Then

$$\frac{1}{N} \sum_{i \neq j} \frac{1}{|x_i - x_j|} \simeq \int dx \frac{g(x)}{N} \frac{1}{|x - x|} \quad (x)$$

by the law of large numbers (on the left we have the mean energy experienced by the i -th particle

$$\frac{1}{N} (x_1 + \dots + x_N) \rightarrow \mu.$$

Under this approximation, we have

$$\langle \varphi_N, \sum_{i < j} \frac{1}{|x_i - x_j|} \varphi_N \rangle = \frac{1}{L} \langle \varphi_N, \sum_{i < j} \frac{1}{|x_i - x_j|} \varphi_N \rangle \simeq$$

$$\simeq \frac{1}{2} \langle \psi_N, \sum_{i=1}^N \omega(x_i) \psi_N \rangle$$

where $\omega(x) = (g * 1 \cdot \Gamma^{-1})(x)$. The big conceptual simplification is that we replaced a sum of two-body operators by a sum of one-body operators by an averaging principle. Repeating the computation as for the external potential we get

$$\frac{1}{2} \langle \psi_N, \sum_{i=1}^N \omega(x_i) \psi_N \rangle = \frac{1}{2} \int dxdy g(x)g(y) \frac{1}{|x-y|}$$

All this leads to the Thomas-Fermi functional:

$$\mathcal{E}_{TF}(g) = C_{TF} \int g^{5/3}(x) dx - \int g(x) V(x) dx + \frac{1}{2} \int \frac{g(x)g(y)}{|x-y|} dy + U$$

where $V(x) = \sum_{j=1}^N \frac{z_j}{|x-R_j|}$, $U = \sum_{i < j} \frac{2_i z_j}{|R_i - R_j|}$

The domain of the functional is given by

$$\mathcal{F}_N = \{g: \mathbb{R}^3 \rightarrow \mathbb{R} \mid g(x) \geq 0, \|g\|_1 = N, g \in L^{5/3}(\mathbb{R}^3)\}$$

The Thomas-Fermi ground state energy:

$$E_N^{TF} = \inf_{g \in \mathcal{F}_N} \mathcal{E}_{TF}(g)$$